On a Szego Type Limit Theorem, the Holder-young-brascamp-lieb Inequality, and the Asymptotic Theory of Integrals and Quadratic Forms of Stationary Fields

نویسندگان

  • Florin Avram
  • Nikolai Leonenko
  • Ludmila Sakhno
چکیده

Many statistical applications require establishing central limit theorems for sums/integrals ST (h) = ∫ t∈IT h(Xt)dt or for quadratic forms QT (h) = ∫ t,s∈IT b̂(t − s)h(Xt,Xs)dsdt, where Xt is a stationary process. A particularly important case is that of Appell polynomials h(Xt) = Pm(Xt), h(Xt,Xs) = Pm,n(Xt, Xs), since the “Appell expansion rank” determines typically the type of central limit theorem satisfied by the functionals ST (h), QT (h). We review and extend here to multidimensional indices, along lines conjectured in [16], a functional analysis approach to this problem proposed by Avram and Brown (1989), based on the method of cumulants and on integrability assumptions in the spectral domain; several applications are presented as well. Résumé. Nous considérons ici des théorémes de limite central pour des sommes/integrales ST (h) = ∫ t∈IT h(Xt)dt, et pour des formes quadratiques QT (h) = ∫ t,s∈IT b̂(t − s)h(Xt,Xs)dsdt, où Xt est un processus stationnaire. Un cas particulièrement important est celui des polynômes d’Appell h(Xt) = Pm(Xt), h(Xt,Xs) = Pm,n(Xt, Xs). Pour ce problème, nous généralisons ici au cas des indices multidimensionnels une approche proposée par Avram et Brown (1989), basée sur la méthode des cumulants et sur des hypothèses d’integrabilité dans le domaine spectral. Plusieurs applications illustrent la versatilité de l’approche. 1991 Mathematics Subject Classification. 60F05, 62M10, 60G15, 62M15, 60G10, 60G60. The dates will be set by the publisher.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit theorems for additive functionals of stationary fields, under integrability assumptions on the higher order spectral densities

We obtain central limit theorems for additive functionals of stationary fields under integrability conditions on the higher-order spectral densities. The proofs are based on the Hölder-Young-Brascamp-Lieb inequality. AMS 2000 Classification: 60F05, 62M10, 60G15, 62M15, 60G10, 60G60

متن کامل

A Generalized Holder Inequality and a Generalized Szego Theorem

We prove a limit theorem connected to graphs, which when the graph is a cycle reduces to Szego's theorem for the trace of a product of Toeplitz matrices. The main tool used is a Holder type inequality for multiple integrals of functions which are applied to variables satisfying linear dependency relations.

متن کامل

Sum of Square Proof for Brascamp-Lieb Type Inequality

Brascamp-Lieb inequalities [5] is an important mathematical tool in analysis, geometry and information theory. There are various ways to prove Brascamp-Lieb inequality such as heat flow method [4], Brownian motion [11] and subadditivity of the entropy [6]. While Brascamp-Lieb inequality is originally stated in Euclidean Space, [8] discussed Brascamp-Lieb inequality for discrete Abelian group an...

متن کامل

Stability of the Brascamp–lieb Constant and Applications

We prove that the best constant in the general Brascamp–Lieb inequality is a locally bounded function of the underlying linear transformations. As applications we deduce certain very general Fourier restriction, Kakeya-type, and nonlinear variants of the Brascamp–Lieb inequality which have arisen recently in harmonic analysis.

متن کامل

A Forward-Reverse Brascamp-Lieb Inequality: Entropic Duality and Gaussian Optimality

Inspired by the forward and the reverse channels from the image-size characterization 1 problem in network information theory, we introduce a functional inequality which unifies 2 both the Brascamp-Lieb inequality and Barthe’s inequality, which is a reverse form of the 3 Brascamp-Lieb inequality. For Polish spaces, we prove its equivalent entropic formulation using 4 the Legendre-Fenchel dualit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008